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Abstract 

Bogue-Jimenez, Brian. M.S. The University of Memphis. October 2021. Exploring 

Continuous Non-invasive Solutions for Blood Glucose Monitoring. Major Professor: Dr. 

Ana Doblas.  

 Glucose monitoring technologies allow users to monitor glycemic fluctuations (e.g., 

current glucose levels in their blood, also known as glycemia). This is particularly important for 

individuals who suffer from diabetes mellitus (DM), commonly referred to as diabetes. 

Traditional self-monitoring blood glucose (SMBG) devices require the user to prick their finger 

and extract a blood drop to measure the blood glucose based on chemical reactions with the 

blood. Unlike traditional glucometer devices, non-invasive continuous glucose monitoring 

(NICGM) devices aim to solve these issues by consistently monitoring users’ blood glucose 

levels (BGL) and without invasively acquiring a sample. This Master Thesis aims to investigate 

the feasibility of a novel approach to NICGM via the use of off-the-shelf wearable sensors and 

the integration of learning-based models (i.e., machine learning). Several sensors were purchased 

to generate our own dataset with an increased feature set for studying possible relationships 

between glucose and non-invasive biometric measurements. Two datasets were collected for this 

study: (1) the OhioT1DM dataset, which is a publicly available dataset that can be obtained by 

contacting Ohio University; and (2) the UofM dataset, which was created by this research team. 

Both the Ohio dataset and our UofM dataset are passed through a machine learning pipeline that 

tests several models to determine whether the features are sufficient for predicting blood glucose 

concentrations. While preliminary results seem optimistic, a larger dataset is required to make 

conclusions about the feasibility of this approach.   
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Chapter 1: Introduction 

 Diabetes Mellitus, colloquially known as diabetes, has been estimated to affect 450 

million people of the global population [1]. This condition is characterized by abnormal levels of 

blood sugar. Furthermore, there are three main types of diabetes, classified by the National 

Diabetes Data Group (NDDG) as type 1, type 2, and Gestational Diabetes [2]. Type 1 diabetes, 

formerly known as juvenile diabetes, is an autoimmune disorder that a person is born with. This 

form of diabetes arises from the pancreas’s inability to produce enough, or any, insulin. An 

individual who suffers from this condition must undergo daily insulin therapy via insulin 

injections or an insulin pump. If insulin levels are too low, the result will be that the blood 

glucose levels (BGL) will be too high, which is known as hyperglycemia. If too much insulin is 

administered, this will cause the BGL to be too low, which is known as hypoglycemia. Type 2 

diabetes, also known as adult-onset diabetes and the most prevalent of the three, frequently 

causes hyperglycemia due to insulin resistance. In other words, the body builds a tolerance to 

insulin and can no longer adequately process it [2]. The third type of diabetes, gestational 

diabetes, also results in hyperglycemia. This condition is usually not chronic but can be 

dangerous to both the mother and child. Aside from these three types of diabetes mentioned, the 

NDDG also states several “Impaired glucose intolerance” disorders can result in symptomatic 

and asymptomatic individuals. 

 Complications often arise in individuals that suffer from diabetes. Many of these can be 

life-threatening, such as cardiovascular disease and renal failure. Other, less severe 

complications include nerve damage, ketosis, and various skin conditions. All of which 

dramatically affect the quality of life of a patient. Furthermore, diabetes incurs a significant cost 

on the economy [3]. In the United States alone, it is estimated that 24.7 million adults (i.e., 9.7% 
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of the population) have diabetes. This, in turn, costs the economy $327 billion in 2017. Direct 

medical costs comprise $237 billion, and the remaining is attributed to indirect costs such as the 

loss of productivity. For those with diabetes, medical costs are 2.3 times greater than their non-

diabetic peers, meaning that, on average, a diabetic person will spend $9,601 per year managing 

their diabetes. This cost is only expected to rise as it has in the past, by 26% from 2012 to 2017.  

 As previously mentioned, both hyper- and hypoglycemia, if not corrected within a timely 

manner, can result in long-term health complications. Even so, many diabetic people do not 

regularly check their BGL due to how much of a chore it is.  Traditional glucose monitoring 

devices require obtaining a blood sample invasively that is then measured via an electrochemical 

sensor. Along with being an uncomfortable ordeal for diabetic people of all ages, this process 

only results in a snapshot of the user’s overall condition, as eloquently put by Gonzales et al. 

2019 [1]. In this paper, the author further defines these types of devices as self-monitoring blood 

glucose (SMBG) devices and differentiates them from continuous glucose monitoring (CGM) 

devices, which allow its user to have a greater overall idea of how their body’s BGL fluctuate 

throughout the day with continuous and automatic measurements.  

1.1: Overview 

Accurately being able to measure blood glucose is an essential step in the healthcare of 

diabetes patients. The proposed system takes a synergistic approach in which non-invasive 

biometrics measurements are combined with machine learning algorithms to predict blood 

glucose levels (BGLs) non-invasively and accurately estimate BGLs using a non-invasive 

system. The investigated non-invasive features include heart rate (HR), skin temperature, heat 

flux, electrodermal activity (EDA, also known as galvanic skin response, i.e., GSR), pulse 

oximetry, ambient temperature, and ambient humidity.  



3 

The goal of this research is to test different non-invasive features using machine learning 

(ML) approaches, and their performance in estimating the blood glucose of an individual based 

on the features obtained. Two datasets have been collected which are relevant to this project. The 

first dataset is from the “OhioT1DM Dataset for Blood Glucose Level Prediction” (a.k.a. Ohio 

Dataset) [4]. The second is a dataset created by the research team from the University of 

Memphis (i.e., the UofM Dataset) for this Master thesis. 

1.2: Objectives/Aims 

This thesis is divided into two main parts. First, we investigate the application of different 

ML algorithms to the existing Ohio dataset. In the Ohio dataset, the BGLs range from 40 mg/dl 

to 400 mg/dl. After this, we investigate a scaled-down version of the Ohio dataset, whose BGL 

ranges from 60 mg/dl to 200 mg/dl to assess if the combination of the features from the Ohio 

dataset and ML algorithms is sufficient to predict BGLs within the healthy/normal range. We 

aim to answer whether features currently available in smartwatch-like wearable devices are 

enough to monitor and predict glucose values or, oppositely, there is a need for adding new 

features. 

The second objective addresses the need for additional features to generate a more complete 

dataset (the UofM dataset). This dataset was collected by a research team at the University of 

Memphis, utilizing several non-invasive sensors. The UofM dataset has been generated using 

three individual healthy subjects.  

1.3: Contributions and Impact 

This project provides the following contributions. Firstly, it explores the combination of 

non-invasive features integrated onto NICGM device and machine learning to predict and 
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monitor blood glucose values of a healthy and diabetic individual.  Such a device would 

significantly enhance the lifestyle of diabetic patients and have broader applications in the 

medical industry, such as sports science and nutrition. This investigation also provides a strong 

foundation for future works in this field of study.  

In addition, this research study results in a more complete non-invasive dataset that could 

be useful for a broad range of applications, enabling the study of personal versus universal health 

monitoring models. In other words, having information from multiple participants would allow 

us to compare the viability of a global model for all participants versus personalized models for 

each individual. Finally, this work describes and implements popular methods of analyzing 

datasets and the performance of  machine learning models 
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Chapter 2: Background and Literature Review 

This chapter provides a literature review of current monitoring methods for blood glucose 

levels. The two most accurate methods for measuring BGL in a laboratory setting are the 

enzymatic-amperometric and hexokinase methods [5]. Both these methods rely on an enzymatic 

reaction produced by exposing a sample of blood to these enzymes. Once this happens, a 

chemical reaction takes place, which creates some energy that can be measured as a current. This 

current is then measured, and since the amount of current produced is proportional to the amount 

of glucose present in the blood, a numeric value for the glucose can be obtained. Both these 

methods are highly accurate and sensitive, making them ideal clinical “ground truth” for other 

systems to be compared to. 

 A nearly identical approach is employed in SMBG devices, commonly referred to as 

glucometers. A person uses a lancelet to prick their finger to obtain blood. Once this blood is 

obtained, it is absorbed by a sensor strip that contains an enzyme, as stated above [5]. The 

current is then measured, and a numeric value for the user’s BGL is shown on the screen. 

Although these devices are very beneficial to diabetic patients, they do present some drawbacks. 

The first and most apparent is the invasiveness of the procedure. As one can imagine, creating an 

open wound multiple times a day can be uncomfortable and presents the opportunity for the open 

wound to become infected. Additionally, these home monitoring techniques have a low 

frequency of measurements that entirely depend on the user. As a hypothetical scenario, if a 

diabetic user takes 3-5 measurements a day, this is all the information they must go on. This 

level of discretization leads to a great deal of uncertainty in between measurements. 

To accommodate for the weaknesses of traditional home monitoring techniques, several 

methods have arisen. Some of these methodologies have even made it to the market as 
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commercial devices. What follows is a discussion of several devices, including a small summary 

of their working principle, and benefits and/or drawbacks.   

2.1: Glucose Oxidase Needle (GON) (e.g., Dexcom G6 and Freestyle Libre) 

 The first method is referred to as the glucose-oxidase needle (GON) approach. The 

review written by Cappon et al. 2019[6] refers to them simply as CGM devices. This approach 

has seen a great deal of commercial success, and several devices have used this technology. For 

these devices to work, the user must wear a glucose-oxidase-doped platinum electrode deposited 

on a needle inserted in the subcutaneous tissue to ignite and catalyze glucose oxidation [6]. 

Therefore, this method has been classified a minimally invasive since the needle must pierce the 

subcutaneous layer of skin. These sensors also contain a transmitter that sends the measurements 

to a complementary device or, more recently, smartphones. Since their inception in 1999, these 

devices have improved their accuracy, and nowadays, they perform similarly to traditional 

SMBG devices. These devices also provide additional features to the user such as trend arrows, 

alerts and alarms, remote monitoring for physicians or parents, and compatibility with insulin 

pumps. Their success has proven how useful CGM can be to diabetic patients. However, these 

devices still present some drawbacks. For example, these devices rely on sensors with a limited 

lifespan, needing to be replaced every two weeks at most. The continuous purchase of sensors 

becomes costly and leads to unnecessary waste. In addition, this approach relies on measuring 

glucose level in the subject’s interstitial fluid (ISF), rather than their BGL. This results in a delay 

from the true BGL measurement of about 10-20 minutes, not providing real-time measurements 

[7].  
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2.2: Electrical Impedance Spectroscopy 

The second method is electrical impedance spectroscopy (EIS), which was utilized in a 

device designed by Caduff et al called the PENDRA. This device utilized capacitive sensors to 

measure the dielectric properties and impedance of human skin. A good correlation was shown 

between these parameters and blood glucose [8]. This device showed great promise as the first 

commercial NICGM device; however, it ultimately failed in the market due to its poor 

performance in real-world setting (i.e., it was only capable of successfully estimating the BGL of 

two-third of users). Moreover, it required a difficult calibration procedure that had to be 

performed by a team of health care professionals [9].  

Most of these EIS devices rely on the implementation of capacitance sensing via 

interdigital sensors [10]. These interdigital sensors (a.k.a. fringing field sensors) can measure the 

dielectric properties of the skin. When these electromagnetic fields cross the human skin, the 

equivalent impedance of the subcutaneous tissue can be measured at frequencies higher than 200 

kHz. This impedance has been shown to be well correlated with the amount of glucose 

concentration in the ISF of the skin.  However, a significant challenge in the application of these 

devices has been the sensitivity of these devices under different levels of applied force.  

Additionally, research by Caduff’s team has indicated that global models perform 

significantly worse in human trials [11]. Their study found that the individual model performed 

better than the global model for all their test subjects, presenting an interesting question of how 

accurate these types of devices are for different types of skin characteristics. They proposed the 

use of more sophisticated non-linear statistical modeling techniques in future works.  
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2.3: Metabolic Heat Confirmation 

 Blood glucose can also be estimated through a technique known as metabolic heat 

conformation (MHC). This technique takes advantage of the fact that most of the heat generated 

by the human body is a result of the cellular process that converts glucose into energy [12]. This 

heat is then dispersed into the surrounding environment in the form of convection, evaporation, 

and radiation. Within the MHC technique, other features are also considered, including ambient 

information (i.e., temperature and humidity), hemoglobin concentration, oxyhemoglobin 

concentration, and blood flow rate. These features are measured using multi-wavelength 

spectroscopy at the fingertip of a patient’s hand [12]. The main drawback of this approach is that 

it is sensitive to environmental factors, and current implementations are not continuous.  

2.4: GlucoTrack 

 The last device to be discussed is the GlucoTrack, which employs a combination 

methodology approach [13]. This device combines three different techniques for non-invasively 

estimating the BGL from the user’s earlobe. These three techniques are ultrasonic, 

electromagnetic, and thermal. The ultrasonic sensor measures the speed that an acoustic wave 

travels through the user’s earlobe. The electromagnetic sensor does something equivalent but 

with electromagnetic impedance. The thermal approach applies a known amount of energy for a 

predetermined period and obtains the heat transfer characteristics of the tissue. Although none of 

these techniques directly measure the BGL, a strong correlation has been shown to exist between 

the individual measurement characteristics and the BGL in the earlobes’ tissue [13]. The 

procedure for a user to use this device is quite simple, they simply attach the sensor clip onto 

their earlobe and press a button. Although this novel approach is the most successful non-
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invasive device, it does not provide continuous measurements. Nonetheless, more frequent 

measurements are likely to be performed by a user considering there is no need for bloodletting.  

2.5: Reasoning for this Thesis 

  Since a truly NICGM has not yet managed to find any foothold in the commercial 

market, the quest continues. Several researchers are still investigating different approaches and 

trying to develop a device that can compete with current GON devices. A large portion of the 

community seems to be investigating the approaches classified as impedance spectroscopy or 

optical detection. Some approaches have even combined the two methods, a concept similar to 

the GlucoTrack, and are pursuing a combination methodology approach [13]. 

Caduff’s research team, mentioned previously as developers of the PENDRA, have 

combined different impedance spectroscopy sensors into one device. This new device, dubbed 

the “Multisensor”, was published in 2015 and used multiple fringe field sensors combined with 

interdigital and optical sensors. This allows the Multisensor to measure other external 

perturbations to reduce noise [14].  

Optical approaches have also garnered some attention as they remove the concerns 

associated with a delayed estimation that comes from measuring ISF’s parameters. Two methods 

of note are near-infrared (NIR) absorption and Raman spectroscopy. NIR spectroscopy suffers 

from shallow penetration and can only be used on parts of the body such as the finger and 

earlobes [15]. Raman scattering has been shown promising results but minimizing such a device 

into a wearable CGM device comes with its own challenges.  

As stated previously, a true NICGM has not achieved commercial success. Previous 

attempts have had fatal flaws (PENDRA) or have not been truly non-invasive (GON). Therefore, 
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the need for an utterly NICGM device cannot be understated. This technology would be life-

changing for many people worldwide by giving them more insight into how their own body 

works. If symptoms of their condition were to present themselves, a user could instantly know 

their BGL without the need for bloodletting. Furthermore, having continuous data throughout the 

day could lead to better administration of insulin therapy. Such a system could also decrease 

costs associated with devices that have one-use sensors  
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Chapter 3: Methodology 

 This section discusses the methodology employed during this study. This study limited its 

scope to two datasets, the Ohio and UofM datasets collected by research teams from the Ohio 

University and the University of Memphis, respectively. Several features have been identified 

and are specificized in the coming sections. All features used are non-invasive, and those 

collected in the UofM dataset used off-the-shelf sensors for ease of data collection and to ensure 

the quality of measurements. Finally, the procedure by which the datasets were processed, 

compared, and used in combination with machine learning modeling techniques are discussed in 

detail.  

3.1: Aim 1.1 – Obtain and analyze OhioT1DM 

 To gain a more significant intuition of how to achieve the goals outlined previously, a 

dataset is needed. A suitable dataset was found named OhioT1DM, which was collected by 

researchers at Ohio University in 2018 and 2020. The dataset contains eight weeks of data for 

each patient, with six patients per year (e.g., a total of twelve participants within the two years). 

In this dataset, all patients have type 1 diabetes. Several features were collected using either 

530G or 630G model insulin pumps or the ancillary device, the Medtronic Enlite CGM. Also, the 

dataset includes features from the Empatica Embrace (2018) or Basis Peak (2020). By changing 

the wristband worn device, galvanic skin response (GSR) was no longer included in the datasets 

from the year 2020. Therefore, only the first 6 participant datasets from 2018 are reviewed from 

in this study. A comprehensive list of all features can be found in [4]. 

 Due to the scope and purpose of this thesis, only features that could be collected via a 

wristband-like device (i.e., non-invasive features) are considered. This includes the following 

features: GSR, skin temperature, air temperature, and heart rate (HR).  
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These datasets are stored as XML files, which have been turned into ‘.csv’ file. Some 

preliminary preprocessing was performed on the data to remove apparent outliers (those that 

span beyond the reasonable domain for each feature), and to match sample values by time 

signatures. Since the values were continuous and with different sampling rates, a down-sampling 

was performed on those features with an excess of samples. This was done by rounding their 

time signatures to the nearest minute and averaging all values with matching time signatures. 

Then, the values of individual features were matched based on the intersection of their times. 

This results in approximately twelve thousand samples per subject. 

For each subject, his/her dataset was fed through a custom-made machine learning 

pipeline written in the Python programming language, which can be found in the Appendix A. 

This pipeline enables the testing of several different ML models and scaling methods 

automatically. To verify the results of this pipeline, we also show the results from the MATLAB 

regression learner app.  

3.2: Aim 1.2 – Reduced range of target values in OhioT1DM 

 To answer the question if currently available non-invasive features are sufficient to 

predict blood glucose levels within the healthy range, we created a new dataset truncating the  

target variable (i.e., glucose) range from the Ohio dataset. This reduced dataset is then passed 

through the Python code and MATLABs regression app to analyze the performance of the 

current non-invasive features to predict normal blood glucose levels.   
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3.3: Aim 2 – UofM Dataset 

 As we will show in the results’ section, there is a need for a dataset containing more 

features to predict blood glucose within abnormal and normal ranges. For this reason, this a 

custom dataset was created using an array of sensors. These sensors were chosen based on the 

literature review. The sensors chosen are as follows: g-Skin heat flux sensor, Empatica E4 

wristband, Delfin MoistureMeterD, Viatom Checkme O2, Omron 3 Series upper arm blood 

pressure monitor, and finally an Adafruit DHT11. The features that these sensors provide are 

shown in the following diagram.  

 

Figure 1: Sensors chosen for UofM data and the features they provide. 

 These features were chosen due to an expectation they will have a moderately high 

correlation with blood sugar based on reported studies [12,13]. Most of the features in this list 

were heavily inspired by the MHC technique discussed in Section 2.3 (i.e. heat flux, pulse 
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oximetry, skin temperature). In contrast to MHC, all the sensors that provide these features using 

the proposed approach could be implemented in a smartwatch-like wearable device. This was not 

the case in MHC because of its reliance on the multiwavelength spectroscopy technique, which 

for the necessary wavelengths would be far to bulky. The remaining sensors were chosen as they 

are equivalents are already prevalent in smartwatch devices.  

As shown in Figure 1, there is some redundancy in selecting some of the sensors to 

ensure accurate measurements. The sensors listed have also been chosen specifically due to their 

compatibility with this application. As previously stated, the intended use of this device would 

include a form factor that is compatible with wrist-worn bands. These have become increasingly 

popular in recent years due to comfort and convenience. Moreover, some of these sensors have 

already been implemented in other devices. For example, the Empatica E4 band implements 

sensors for EDA, HR, and skin temperature while maintaining the form factor of a smartwatch 

wristband device.  

One of the most significant sources of inspiration for this project was the metabolic heat 

confirmation technique previously discussed in Chapter 2. However, this approach differs in that 

it does not rely on optical spectroscopy. As a matter of fact, the only optical sensors in this 

proposed method would only be photoplethysmography sensors, already commonly found in 

nearly all smartwatch-like wearable devices. This sensor provides heart rate and SpO2 

information. The heat flux sensor and skin moisture sensors were also chosen as they would 

capture information about the energy released out from the body into the environment in the 

form of radiation or evaporation. This also required ambient information, which is why the 

ambient temperature and humidity sensors are needed.  
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Furthermore, the Freestyle Libre 2 has been selected as the target variable sensor for this 

dataset. It will provide glucose values at a minimum sampling frequency of once every 15 

minutes. Glucose measurements are then stored in the ancillary data logger or a compatible 

phone application. Manual measurements are also allowed for up to a maximum sampling 

frequency of once per minute. We expect that some of the measurements provided by the 

selected sensors and the blood glucose measured by the Freestyle Libre 2 would be highly 

correlated to give the necessary predictive power in the ML models.  

 

Figure 2: Sensors worn for the first 2 trials of the UofM dataset collection procedure 

Two procedures for the data collection process were defined. The first of the two 

procedures included all the sensors previously mentioned. An image of all the sensors used in 

this first iteration of the procedure is shown in Figure 2. Data was collected for a period of 7 

hours, sampling the target variable every 5 minutes. This led to approximately 84 samples for 
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two test subjects. Subjects were asked to fast overnight. Breakfast was administered in the first 

90 minutes of the procedure. Then the subjects were asked to exercise for 60 minutes at low 

intensity. Low intensity was defined as maintaining a heart rate at 160% their resting heart rate 

for the hour's duration. Then, the subject increased the intensity level to 175% of their resting 

heart rate (a high-intensity exercise) for another 30 minutes. The aim of this exercise period was 

to cause the subject’s blood sugar to drop dramatically after the breakfast. After the exercise, 

lunch was administered, and subjects were asked to sit idly for 90 minutes. To test the sensor’s 

accuracy under different conditions, two thermal challenges were simulated. In the first 30 

minutes of the thermal challenge, the subjects were placed in hot temperatures and under direct 

sunlight for 30 minutes. The temperature for this thermal challenge was kept above 26.6 degrees 

Celsius (79 F). During the second 30-minute portion of the thermal challenge, the subject sat in a 

room where the temperature did not exceed 21 degrees Celsius (70 F). This thermal challenge 

aimed to see if the blood glucose levels are affected by sudden changes in ambient temperature, 

or if the ambient temperature had any role. Finally, the test subjects rested once again for 90 

minutes in idle sitting positions.  

 

Figure 3: Sensors worn for the third trial of the UofM dataset collection procedure 
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 Due to time constraints and the small sample size resulting from the datasets collected in 

procedure one, a second procedure was developed. An image showing how the sensors worn 

during this procedure is shown in Figure 3. This procedure aimed to be more lenient so that data 

could be collected automatically and passively for five days. However, this necessitated that 

certain sensors were not used at all during procedure 2. In particular, we excluded the Delfin 

MoistureMeterD, and the Omron Blood pressure cuff since these sensors require manual 

measurements. Furthermore, since the data was no longer taken manually every 5 minutes, the 

target data sampling frequency was reduced to once every 15 minutes. Data for procedure 2 was 

collected for 10 hours per session over the period of 5-day sessions and 2-night sessions. This 

resulted in 70 hours of data with four samples per hour, summing 280 samples.  

 All these datasets were preprocessed by the methods as follows. Firstly, since each sensor 

presented a different sampling rates, the data points for each feature needed to be down-sampled 

to match the sampling rate of the target variable. This was done in a process similar to the one 

described for Aim 1. In essence, each of the feature had their sample’s time signatures rounded 

to the nearest minute. Then, all the samples with equal time signatures were averaged. Finally, 

only those values with the same time signature down to the minute with respect to the target 

variable were kept.  

 After the dataset had been matched by time, outliers were removed. The most obvious 

outliers are those that fall outside the domain that is expected for the feature in question. For 

example, some of the SpO2 samples had values exceeding 100%, which is impossible. These 

wrong measurements of the sensors could be the result of getting a loose connection during data 

collection.   
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3.4: Model Selection and Evaluation 

 To adequately assess the predictive power of the features, several models were 

considered. The field of Data Science utilizes a broad array of techniques and different theories 

to derive knowledge from data. Although this is an expansive field with much to learn from and 

apply different practices, in this thesis, we have only explored the standard practices. This 

section describes the practices employed to examine model performance on the formerly 

mentioned datasets.  

3.4.1: Metrics 

 Quantifying one’s results is an important step in determining the quality of the 

predictions. Therefore, some reasonable metrics must be established. In this work, we have used 

common metrics used in the literature and associated with the application of wearable sensors.  

The first to be discussed is Root Mean Squared Error (RMSE), whose equation is given 

below, where 𝑦̂𝑖 is the predicted value and 𝑦𝑖 is the true value, and n is the number of samples:  

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑛

𝑖=1             (1) 

As one realizes, Equation 1 is similar to the equation for standard deviation, which is why it is 

also known as the standard deviation of the residuals. The benefit of using RMSE is that it 

maintains the units of the original target variable. This allows the results to be easily understood 

in context. It is also a favorite among metrics used by research into other BGL monitors. Another 

benefit is that this metric is easily used in tools developed specifically to evaluate the accuracy of 

blood glucose meters (e.g., Clarke Error Grid Analysis). Additionally, this metric is commonly 

used for quantifying the performance of regression algorithms and is usually implemented in the 

programming toolboxes.  



19 

 The second metric used is coefficient of determination (R2) which is defined in Equation 

(2) where SSres is the sum of squares of the residuals (a.k.a. errors), and SStot is the total sum of 

the squares (from the prediction to the means):  

   𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
=  1 −

∑ (𝑦̂𝑖−𝑦̅)2𝑛
𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

                     (2) 

In this equation, 𝑦̂𝑖 is the predicted value at the observation, 𝑦 ̅ is the mean of the dependent 

variable and 𝑦𝑖 is the observed value (true value). Although slightly less intuitive than the 

previous metric, generally, this number falls between 0 and 1, however not exclusively. An R2 of 

zero would indicate that the predictions are no better than if the regression algorithm simply 

guessed the mean of the target for every prediction. R2 values ranging from 0 to one indicate that 

there is some predictive power in this model. If the coefficient of determination is less than zero, 

this means the model is arbitrarily performing worse than if it were to guess the mean of the 

target variable. Therefore, the R2 value is a reasonably good way to understand how well a model 

is performing. It should be noted that there are several definitions of R2 and how it is specifically 

implemented. However, Equation 2 is the most general definition. This definition is the one that 

is used for the remainder of this thesis.  
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Figure 4: Blank Example of the Clarke Error Grid Analysis Plot 

One final metric is the Clarke Error Grid Analysis (Figure 4) which was used to evaluate 

how acceptable the model’s performance to predict blood glucose. This metric is a scatterplot of 

the reference/estimated values plotted against the true values to determine the accuracy of the 

prediction. In the Clarke Error Grid, the scatterplot is divided into five regions: A, B, C, D, E. 

The quality of the predictions depends on which region the predictions fall in [16]. Region A are 

values that fall within 20% of the reference values. In region B, the predictions fall outside 20% 

of the true value, but they would not lead to inappropriate actions to correct the condition. 

Region C could result in predicted values that could cause the patient to make wrong actions to 

manage their condition. Region D could lead to a harmful action due to the lack of detection of 

hyper- and hypo- glycemia. Region E confuses hyper- and hypoglycemia events (i.e., an 

individual with a blood sugar of 250 mg/dL can get a predicted value of 50 mg/dL). This plot is 

considered the gold-standard metric for measuring the quality of glucosemeter predictions.  
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3.4.2: Model Selection 

 Various machine learning algorithms were tested on this dataset.  To achieve this 

efficiently, a pipeline script was created in the Python programming language. The core 

toolboxes used were the popular machine learning toolbox SciKit-Learn (a.k.a. sklearn) [17], as 

well as some other auxiliary toolboxes such as: Pandas, NumPy, and Matplotlib. This pipeline 

script will be included as Appendix A. The pipeline also tests a few different scaling methods to 

see if it affects the performance significantly. All models used fall under the broader category of 

supervised learning algorithms in the family of Artificial Intelligence. The machine learning 

models are listed below with descriptions informed by the SciKit-Learn website [17]:  

1. Linear Regression (LR): The implementation of linear regression used is the Ordinary 

Least Squares (OLS) method. This model would be considered univariate multiple 

regression as it has a single target variable and multiple predictor variables. This is the 

simplest of all the models and would only be expected to perform well if there is a high 

correlation between some (or all) of the predictors and the target variable. OLS model 

attempts to fit a linear model by iteratively adjusting the coefficient and intercept of the 

equation by minimizing the residual sum of squares (i.e., the cost/objective function).  

2. Support Vector Regression (SVR): This model is a generalization of Support Vector 

Machines used for classification purposes. The model produced only depends on a subset 

of the training data as defined by the cost function. This cost function ignores values 

whose prediction is close to the target. Model hyperparameters that are adjusted manually 

are the C and epsilon values. This model also supports several different kernel types used 

in the algorithm, which can fit both linear and non-linear relationships. The 
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implementation from the toolbox used does not perform well on dataset larger than a 

couple tens of thousands of samples larger. However, this is not an issue in this case.  

3. K Nearest Neighbors Regression (KNN): The K Neighbors regression model is another 

case where a classification algorithm is generalized for regression applications. Rather 

than just taking discrete variables as class labels for input, this method can fit continuous 

variables. There are several hyperparameters that can also be adjusted by the user, 

including but not limited to: K number of neighbors, the weight function used, and the 

algorithm used for calculating the nearest neighbors. The predictions are based on 

interpolation performed by the model after fitting a training set.  

4. Decision Trees Regression (DTR, CART): Decision trees, otherwise known as 

Classification and Regression Trees, can be visualized as a tree of if-else statements 

whose branches are decisions formed by previous experience. This is a powerful 

regression algorithm that can fit an arbitrary dataset nearly perfectly. Nonetheless, they 

are heavily prone to overfitting; thereby its results should be viewed as optimistic unless 

thoroughly validated. Several hyperparameters can be manually adjusted in an attempt to 

improve performance, including the criterion by which it measures the quality of the 

split, how the branches are split at each node, the maximum depth of the tree, and the 

minimum number of samples needed to justify the creation of a new node. Decision trees 

have a tendency to perform poorly on new data should the original training set not be 

representative of the unseen new data.  

5. Bagging Trees Regressor (BTR): Bagging trees is an ensemble method created from a 

collection of decision trees. This method takes a random subset of samples from each 

feature to train the statistical black box estimator, thereby reducing the variance inherent 
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to simple decision trees. This technique is what makes this model a sparse one. By 

injecting some randomness into the process, BTR becomes more robust to high variance 

but can still fall victim to it, nonetheless. BTR results in much larger and more complex 

models that cannot be easily understood and are quite indeterministic because of the 

randomness. The hyperparameters adjusted in BTR are the same as the ones in DTR 

except the number of trees in the forest.  

6. Random Forest Regression (RFR): Random Forests are a sparse ensemble model created 

from a collection of decision trees, much like bagging trees. Much like with BTR, this 

method employs randomness to combat overfitting. In contrast to bagging trees, RFR 

takes a random number of samples from a random subset of features instead of using all 

features to create the random subset of samples. This makes it even more robust to high 

variance and overfitting since not all features are used to train any tree.  

7. Gaussian Process Regression (GPR): Much like KNN, this approach interpolates 

observations to generalize into a regression algorithm. The benefit of GPR models is that 

they also return empirical confidence intervals for each prediction, providing information 

about the predictions. Using this information can lead to models that can be further refit 

in some regions of the dataset. GPR is also very versatile since it can implement several 

kernels. However, they are not considered sparse models like the ensemble trees 

previously mentioned (BTR, FRF). They also do not perform very well with a high 

number of predictor dimensions, suffering from the curse of dimensionality.  

8. Multi-layer Perceptron Regression (MLP or NNR): This is a specific case of the Neural 

Network family of models that implements regression analysis via the multi-layer 

perceptron method. Neural Networks are known to fit any arbitrary decision boundary, 
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not being limited to linear relationship. The term MLP is loosely used to classify any 

Artificial Neural Network that is feedforward and uses a non-linear activation function at 

each neuron but the input node. The hyperparameters for this model allow a user to adjust 

the lidden layer sizes, the activation function for each hidden layer, and the optimization 

method used to adjust the weights of the nodes.  

3.4.3: Validation/Testing Methods: 

 As mentioned, many of these algorithms will tend to overfit and therefore should be 

tested to determine how well they would perform on unseen data. That word unseen is critical, 

making sure the model has not been trained on the testing data is essential to avoid overly 

optimistic results. Before discussing the validation methods, some intricacies in regards to the 

data splitting should be noted. One should ensure that no scaling is performed after the train/test 

split to avoid data leakage, scaling the test data using the mean and standard deviation of the 

training data. Once again, this is done to safeguard against overly optimistic results caused by 

data leakage.  
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Figure 5: Hold-out versus cross-validation 

Two methods for validation are presented in this Master thesis: hold-out and cross-

validation. Both are represented in Figure 5. The holdout method of testing a dataset is the 

simplest since it only requires that the training and testing sets be separated before training. This 

is the preferred method when datasets are very large or computational power is limited. 

However, the measured performance is limited to the training set that it is trained on. In cases 

where the dataset is very large, and both the training and testing sets are a good representation of 

the total population, the hold-out method does not present any issue. Common issues arise when 

the dataset is relatively small, in which case how the data was split matters a lot and can affect 

performance on unseen data.  

K-fold cross-validation solves this problem by further iteratively splitting the dataset, K 

number of times, into training and validation sets. Doing this essentially generalizes the hold-out 

procedure and repeats it K times on different combinations of training and validation sets. Once 

all combinations are tested, the mean and standard deviation of the scores can be computed. This 
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can give a user a good idea of how the model would perform on unseen data, especially when the 

dataset in question is relatively small. After this step, the best model can be selected based on the 

scores and fitted to the entire training set. Lastly, this trained model can be quantified against the 

unseen test data.   

It is easy to see which of the two methods is superior. Aside from being more 

computationally expensive, cross-validation offers a lot more benefits than drawbacks. The extra 

information about how the models being tested perform on the dataset in question is useful in 

selecting a model. Those new to Machine Learning naively (and understandably) fall into the 

trap of assuming their models are performing great after using the hold-out method. However, 

cross-validation is standard practice. The authors of the textbook “Data-Driven Science and 

Engineering” elegantly claim “if you don’t cross-validate, you is dumb.” 

3.4.4: Machine Learning Pipeline versus MATALB 

 

Figure 6: Machine Learning Pipeline diagram 

 To test all these different models efficiently and without relying on manually running 

each model separately, a pipeline was created. This pipeline, outlined in Figure 6, is flexible 

enough to allow for more models and scaling methods to be included easily. The script allows 
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the user to load in any dataset easily and then run all the regression algorithms and appropriate 

scaling methods at once. This script will compare the scores of all the models and output the best 

model. It also tests a couple of different scaling methods (e.g., standardization, normalization) on 

the dataset to determine if this improves the scores. The full script can be found in appendix A. 

To verify the results of this pipeline, MATLAB’s Regression Learner App will also be 

used to test and compare several models. This program can be found in the “APPS” tab, shown 

in Figure 7, if the appropriate toolboxes are installed.  

 

Figure 7: A visual example of where to find the Regression Learner App in MATLAB 

Once opened, a new session can be started using any dataset that has been loaded into the 

workspace by the user, shown in figure 8.  
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Figure 8: Starting a new session in MATLAB 

To be fair in comparing the two methods, the number of folds selected for cross-validation 

should be equal. Therefore, for the rest of this thesis, we have asummed K = 10 folds.  
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Figure 9: Selecting models to be tested 

Once the dataset has been loaded in and a new session started, the user can choose which models 

to evaluate, shown in Figure 9. For the sake of this demo, the ‘All’ option was selected. In Figure 

10, an example of the best model selected by this app is shown. 
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Figure 10: Best performing model for this dataset 

As can be shown in Figure 10, the predictions are plotted as well as the metrics of the model 

which are highlighted. The plot shown can also be changed from the response plot as seen above 

to the Predicted vs Actual, Residuals, and Min MSE. These will be useful later.  
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Figure 11: Min MSE plot hyperparameter tuning 

Figure 11 shows that the best hyperparameters selected by minimizing the MSE after 24 

iterations lead to an increase of the RMSE.   
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Chapter 4: Results 

 In the following chapter, the different datasets are used to test out several models. 

Individual subjects were trained and tested by using personally trained models that were then 

tested on unseen data from the same subject. Global models have not been explored. The best 

model is presented for each subject along with discussion of the results. The meaning and 

relevance of these results is then be examined in detail and compared to one another.  

4.1: Aim 1.1 – Ohio Data Results 

 As previously mentioned, the following results were obtained via the use of either Python 

or MATLAB. In both cases, the methodology detailed in Chapter 3 was strictly followed for 

developing the code or using the associated applications. For the sake of brevity, only 2 subjects 

from OhioT1DM dataset are discussed in this section. The two patients are Subject 559 and 563. 

These datasets were chosen because they present the highest and lowest variance, respectively 

 The only features that are kept from the original datasets are: ambient temperature, 

glucose, heart rate, skin temperature. Tables 1 and 2 display the sample count, mean, standard 

deviation (std), minimum and maximum values, 25% quartile, 50% quartile, and 75% quartile 

for each feature in both subjects. These tables demonstrate the characteristics of the dataset, 

including the distribution of the target variable (glucose) and its range.  
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Table 1: Description of data, Subject 559. 

 

Table 2: Description of data, Subject 563 

 

The methods used to clean the data are outlined in Chapter 3. The only significant 

alterations to the data are the transformation of the GSR feature with a logarithmic operation to 

remove some of the skewness of the data. This is shown in the tables above by the feature 

column ‘log(GSR)’. 

Tables 3 and 4 show the correlation matrices for subject 559 and 563. As a quick visual 

aid for identifying the magnitude of the coefficients, we have colored each cell in the tables 

based on the estimated correlation coefficient. From these matrices, we can deduce a lot of 

information about the dataset that has not been described previously. Most notably, the 

relationship of the features to the target data. It seems that the best correlation to the glucose is 
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that given by the heart rate in subject 559’s data, which has a coefficient of 0.2. Nonetheless, due 

to the reduced correlation between the target glucose values with respect to the input features, it 

is expected that these features are not very good predictors of BGLs if strictly linear models are 

used. For this reason, we have also investigated several models within the pipeline that can 

hopefully account for and identify non-linear relationship between the BGLs and the features 

that may not be obvious.  

Table 3: Correlation Matrix for Subject’s 559 dataset 

 
Table 4: Correlation Matrix for Subject’s 563 dataset 

 
 

Once the data have been processed, it was passed through the machine learning pipeline 

previously described. The results of the training procedure are shown in Figure 12. These are the 

results of the best model after being trained by using 10-fold cross-validation. In this case, the 

best model chosen was an Ensemble method called Bagged Trees. These results indicated that 

the features from the Ohio data do not have sufficient predictive power to be used for blood 

glucose level (BGL) predictions. The mean and standard deviation lines are also shown on the 

plot to highlight how the model predictions are doing a poor job. Rather than accurately predict 
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the output, the model has the ‘safest’ predictions that reduce the target metric (e.g., RMSE or 

R2). This results in the model clustering around the mean of the target data, rarely ever making 

predictions outside of one standard deviation from this average. The same behavior is observed 

in the results for the dataset of Subject 563 (figure not shown in this Master dissertation).  

 

Figure 12: Best Model for Subject 559. 

 Another useful way of displaying the results is the Clarke Error Grid Analysis, shown in 

Figure 13. This plot, which is essentially a scatter plot of predicted vs actual values, informs us 

about the behavior of the predictions to the ideal scenario. Ideally, all the points on this plot 

should fall on the dotted diagonal line. When the points are close to this line, the model has 

achieved a very high R2 value. The further the points are from this line, the worse the 
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predictions. In addition, the Clarke analysis has the added benefit of dividing the scatter plot into 

five regions, which rate how good the predictions are for determining treatment; see Section 

3.4.1 in Chapter 3. The goal is that the predictions should stay within region A (i.e., predicted 

values may differ up to 20% of the reference values). Based on this Clarke grid, the predictions 

are clustering in all the regions, indicating that the model is poorly predicting accurate blood 

glucose values. We think the model is underfitting the data due to the lack of a high correlation 

between the predicted data and the features (i.e., the lack of useful features).  

 

Figure 13: Clarke Error Grid for the results of Subject 559. 

 Finally, the results for both subjects 559 and 563 are displayed above in Table 5. Keep in 

mind that although a lower RMSE is shown for 563’s dataset, this is only a result of the reduced 

variance in his target data. For both subjects, the best model has an abysmally low value of R2, 

which shows a terrible fit to the target data. The RMSE is also very similar to the standard 

deviation, meaning the results are no better than if random input values are given as predictors. 
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Furthermore, a significant portion (~6-12%) of the results fall outside the clinically acceptable 

regions of A and B. This would result in individuals taking action at inappropriate moments, 

potentially leading to fatal outcomes.  

Table 5: Relevant metrics for Subjects 559 and 563 

 

4.2: Aim 1.2 – Reduced Range Ohio Data Results 

The final hope for the features of the Ohio dataset rests on the performance improvement 

if the range of the target is reduced to that of a healthy individual. Even though we have just 

shown that these non-invasive features cannot adequately predict BGL values in the range of 40-

400 mg/dL, we are interested in investigating if one can predict blood glucose levels using non-

invasive features for healthy individuals. Therefore, for this task, the datasets for subjects 559 

and 563 have been reduced by deleting all data points whose target blood glucose did not fall 

within the healthy range (e.g., 60-200 mg/dL). After this, the same procedure was performed, we 

repeated the same steps as in Aim 1. Table 6 and Figure 14 shows the best results. These results 

show the same problem as the one discussed in Aim 1. Once again, in Figure 14, all the scatter 

plot’s points are arranged in shape like a rectangle. This behavior can be linked to the fact that 

the target data is underfitted based on the lack of trustable features. Even in a healthy range of 
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BGL, these features simply are not sufficient to predict accurate values of BGL. Therefore, it is 

mandatory that a dataset with better features should be created.  

Table 6: RMSE and R2 metrics for Reduced Datasets of Subjects 559 and 563 

 

 

Figure 14: Clarke Error Grids for the Reduced Datasets of Subjects 559 and 563 

4.3: Aim 2 – UofM Dataset Results 

 Now that new datasets have been created with a comprehensive feature list, these new 

datasets must be fully understood. As stated, for convenience, a similar naming scheme was 

maintained for the three new datasets. The subject’s ID are: 1, 2, and 3. Subject’s 1 and 2 had an 

identical procedure for data collection. Below is a sample table describing the characteristics of 

Subject 1’s dataset.  
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Table 7: Description of Data, Subject 1 

 

As can be seen in Table 7, we have collected 11 additional features. Each of the datasets 

were preprocessed appropriately and in accordance with the preprocessing procedure described 

in Chapter 3 of this thesis. Because these subjects are healthy subjects, the ranges of the target 

data are greatly reduced when compared to the Ohio dataset. This is an unfortunate side effect of 

only having non-diabetic patients as test subjects. Therefore, in this aim, we have investigated 

the performance of a model to predict accurate blood glucose values in healthy subjects, 

discussing if the addition of higher features has improved the performance of the predictors (as 

compared with Aim 1.2).  

We have used the correlation coefficient again to identify the features that are most likely 

to contribute to the model's predictive power, see Table 8. The most important is the first column 

in this table which identifies the bivariate correlation between the target feature and all other 

predictors. For this column, four key features can be identified: heart rate, ventral skin moisture, 

heat flux and electrodermal activity (EDA). All these features have a moderate degree of 

negative correlation to glucose. This makes intuitive sense, and is supported by the literature, as 

it is expected that whatever stressors caused these features to rise will also cause glucose to drop. 

In the case of our study, the stressor was exercise.  
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Table 8: Correlation Matrix for Subject 1 

  

Aside from identifying good features that contribute to the model's predictive power, this 

matrix can also aid in identifying potentially redundant features that could be removed. For 

example, EDA and skin moisture (dorsal) have a fairly high degree of correlation (>0.50), and 

therefore both may not be needed. Another example is EDA and the systolic and diastolic 

measurements. These also appear highly correlated, so a similar conclusion could be reached.  
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Figure 16: Cross-Validation Results, Subject 1 

 Next, the same cross-validation is performed to compare all different model’s fit to this 

dataset. Figure 16 shows the best model from this experiment. These results are attributed to the 

predictions of the Ensemble model: Bagged Trees, as in Aim 1. It becomes immediately apparent 

from looking at the plot that this dataset has a much higher performance. The predicted data 

points do a much better job following the trend of the true values, as indicated from a higher R2 

value. However, it would not be accurate to make final conclusions based on these results 

(Figure 16) since they are the result of cross-validation on the entire dataset. Therefore, a step 

back must be taken to split the dataset into training and testing to avoid any data leakage and 

adequately measure the performance of this model.  
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a)  b)  

Figure 17: Results of testing set for Subject 1: (a) glucose values at different time events 

and (b) Clarke Error Grid 

 Now that the data is split into training and testing sets, the model can be retrained on the 

training set and tested on an utterly unseen test set. Figures 17 and 18 show the results of this 

experiment. While not quite as apparent as before (on account of far fewer samples), the model is 

doing a decent job at following the overall trends of the target variable. A quantitative evaluation 

of the accuracy of the predictions provided by the model is shown in Table 9. This table also 

shows the quantitative metrics for the other two subjects. The best-selected model for subjects 2 

and 3 was a Gaussian Process Regression with a rational quadratic kernel function for subject 2 

and a Matern 5/2 kernel function for subject 3. Based on these values, one can realize that the 

RMSE values have been reduced, mostly related to the reduction in the variance of the target 

variable. Also, it is expected the residuals would have been decreased in this range. From the 

analysis of the ‘goodness of fit’ (R2) , we can conclude that the performance of the model is 

dramatically higher. Whereas all the predicted values (Figure 17b) for subject 1fall in the 

clinically acceptable range of being within 20% of the reference values (Region A), the 
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predictions for subjects 2 and 3 fall within Region B. In particular, 10% and 21.13% of the 

predicted values lie on Region B for subjects 2 and 3, respectively. Nonetheless, it is important 

to mention that although predicted values in Region B differ a factor higher than 20% from the 

reference value, they would not necessarily lead to inappropriate treatment. Finally, it is also 

important to highlight some predicted values (1.41%) for subject 3 are in Region D. As described 

in Chapter 3, subject 3’s data collection was different from the rest since it was collected for 

several days and fewer sensors were used. This means that fewer features were used to predict 

the target glucose values. Furthermore, this dataset was likely prone to more noise as Subject 3 

went about their day-to-day activities.  

Table 9: Relevant metrics for Subjects 1, 2, and 3 
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Figure 18: Clarke Error Grids, (a) Subject 2 and (b) Subject 3 

Finally, for comparison purposes, Table 10 and Figure 20 (next page) shows the results 

obtained using the Python pipeline. The overall best performing model for all 3 subjects is the 

random forest regressor. This model is similar to the ensemble bagged forests regressor. For 

subjects 1 and 2, the random forest regressor provides a better performance predicting the values. 

Note that the R2 value has been increased from 0.71 to 0.822 (+11.2%) for subject 1, and from 

0.72 to 0.76 (+4%) for subject 3. Nonetheless, this trend has not followed for subject 3 whose 

performance has been reduced by a factor of 3%. However, this small difference could be related 

to the random state used to initialize the models and randomly split the dataset. 
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Table 10: Relevant metrics for Python pipeline results 

 

Figure 19: Plots from python pipeline 

   

  

  Subject 1 Subject 2 Subject 3

RMSE 6.359 10.15 15.246

Std. Dev. of train set 15.585 21.454 19.405

R2 0.822 0.76 0.3718
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Chapter 5: Conclusions 

5.1: Conclusions 

This study aimed to explore the feasibility of using an array of non-invasive sensors in 

the prediction of blood glucose level (BGL). Self-imposed parameters required that the sensors 

be completely non-invasive and could realistically be included in a wrist-worn device. First, an 

already existing dataset (e.g., Ohio T1DM) was obtained to get a broad sense of what features 

would be required to accomplish this task. After eliminating all features from this dataset that 

would not fit into a wearable device, it was found that the non-invasive features within this 

dataset were not sufficient. Therefore, another dataset needed to be collected.  

Since a completely new dataset was required, several sensors needed to be purchased. 

The sensors obtained were off-the-shelf ready to use for data collection and either well tested, or 

FDA approved. The signals from these sensors would then be converted into a feature set for use 

in regression analysis. Several commonly used machine learning models were considered and 

compared. The pipeline would determine the best model and present its results. This procedure 

was able to train several models whose performance on the test sets scored high (R2>0.70). 

However, this was not true for all the subject’s datasets. While the worst performing dataset 

underwent a different procedure, with fewer sensors, the sensors removed were bulky and likely 

could not be incorporated into a wrist-worn device. Furthermore, this dataset also raised the 

question of how whether the previous results would scale. Results for subject 1 and 2 only had 

80 samples each. Therefore, the models fitted to these datasets may likely overfit due to the high 

dimensionality of the input feature set. This phenomenon is often called the “curse of 

dimensionality” and arises when an increase in dimensions causes the available target data to 

become sparse.  
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Moreover, the UofM dataset was only collected on healthy individuals, and therefore no 

hypo- or hyper- glycemic events were observed. These features may not maintain their predictive 

power outside the healthy range, not suitable for diabetic patients. A larger dataset would be 

required to arrive at conclusions about how these features would scale to the broader population 

and diabetic individuals especially. Finally, more time should be spent in pre-processing the data 

to reduce complexity in the system and identify the most critical features to be incorporated into 

a wrist-worn device.  

In conclusion, although preliminary data suggests that some of the features collected 

could have sufficient predictive power to estimate BGLs non-invasively, the results remain 

inconclusive.  

5.2: Future work and Recommendations 

 Future work on this project should focus on collecting a larger dataset, with target values 

that span as much of a range as possible. Even though the models trained on this dataset 

appeared to perform well, this dataset was very limited in size and scope. The target values' 

range was insufficient to get enough variability to concretely state whether this approach could 

scale to diabetic patients and still perform well. Furthermore, the size of the dataset makes it 

difficult to know whether the results are due to overfitting because of the high dimensionality of 

the data in proportion to the sample size. The sample size also raises the question of how well 

this dataset is representative of the broader population, even if diabetic individuals are not 

included.  

 To make sure this device has any commercial application, the dataset needs to have a 

more holistic representation of the global population. Individuals with diabetes are the most 
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necessary. We should increase the population range, including people from different races, ages, 

weights, and skin characteristics. This is critically important to avoid the failures of the 

PENDRA device mentioned in Section 2.2. Currently, the UofM dataset lacks any of this 

variability, and therefore representation, with all subjects being of the same race, nearly the same 

age, and all non-diabetic.  

How the features are processed could also be improved, improving the pre-processing of 

the dataset. Instead of our simple cleaning to remove outliers and averaging over a time interval 

to match the timestamp to the target features, we could clean the dataset using a more automatic 

procedure. For example, we could use the software packages Kardia [18] and Ledalab [19]. 

Ledalab is a MATLAB based software package that focuses on the analysis of skin conductance 

(i.e., EDA). Kardia is another MATLAB based software package which is used to extract heart 

rate variability information from inter-beat interval information obtained from PPG/BVP signals. 

Both these features have been shown to be well correlated with BGL [20],[21],[22]. 

Finally, it would probably be worthwhile to decrease the features present in the dataset 

and investigate feature engineering/extraction. Some of the features, like ambient information, 

could be combined with other features to produce more meaningful information. Using principal 

component analysis, or similar dimensionality reduction techniques could also be used to 

transform the data of some features into a lower-dimensional space, thereby reducing the feature 

to sample ratio while preserving the information [23]. Thereby, we could eliminate the “curse of 

dimensionality” previously mentioned. We could also removed features iteratively (based on 

their variance, correlation to dataset, performance in models) to identify which features are the 

most important.  
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Appendix  

Appendix A: Machine Learning Pipeline Code in Python 

# -*- coding: utf-8 -*- 

""" 

Created on Mon Oct 11 16:30:00 2021 

 

@author: Brian 

""" 

import warnings 

warnings.filterwarnings("ignore") 

#%% Load libraries 

import pandas as pd 

import numpy as np 

from matplotlib import pyplot 

 

from sklearn.model_selection import train_test_split,cross_validate,\ 

                                    KFold 

                                     

 

from sklearn.metrics import r2_score, mean_squared_error 

 

from sklearn.linear_model import LinearRegression 

from sklearn.tree import DecisionTreeRegressor 

from sklearn.neighbors import KNeighborsRegressor 

from sklearn.svm import SVR 

from sklearn.neural_network import MLPRegressor 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.pipeline import Pipeline 

 

from sklearn.preprocessing import StandardScaler 

 

 

 

#%% Methods 

def load_my_data(loadpath='./data/Pilot/Subject1_DP/Outputs/smallerdataset-DP.csv',):  

    """Loads in datasets as specified by loadpath 

        :param loadpath (list of string): 

        :returns parsers (list of dataframes): 

        :returns filenames (list string): 

    """  

    file_names = [] 

    parsers = [] 

    for file in loadpath:  

        file_names.append(file.split('/')[-1]) 

        parsers.append(pd.read_csv(file)) 

    return parsers,file_names 

def get_x_cols(df,target_name): 

    """ 

    Returns a list of columns name after dropping columns that wont be used  
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    as variables in regression 

    :params df (DataFrame): 

    :params df (str or list of str):  

    :returns features_df(DataFrame): 

    :returns target_df(DataFrame): 

    """ 

    x_cols = list(df.columns) 

    copy = x_cols.copy() 

    if not (type(target_name) == list): 

        target_name = [target_name] #if not list of str, make it so 

    for target in target_name: 

        for col in x_cols: 

            if ('Lanced' in col): 

                copy.remove(col)     

            if ('Time' in col): 

                copy.remove(col)     

            if ('Activity' in col): 

                copy.remove(col) 

            if ('Intervention' in col): 

                copy.remove(col) 

            if ('Unnamed' in col): 

                copy.remove(col) 

   

        copy.remove(target) 

    features_df = df[copy].copy() 

    target_df = df[target_name].copy() 

    return features_df,target_df 

def create_pipelines(seed, verbose=0, n_components=4): 

    """ 

         Creates a list of pipelines with preprocessing, models and scalers. 

    :param seed: Random seed for models who needs it 

    :return: 

    """ 

    models = [ 

                ('OLS', LinearRegression()), 

                ('KNN', KNeighborsRegressor()), 

                ('SVR', SVR()), #C = 1.0, epsilon=0.1 

                ('DTR', DecisionTreeRegressor()), 

                ('NNR', MLPRegressor(hidden_layer_sizes=(100, 100))), 

                                #   tol=1e-2, max_iter=500, random_state=seed)) 

                ('RFR', RandomForestRegressor()), 

              

               ] 

    scalers = [ 

                ('StandardScaler', StandardScaler()), 

                 

               ] 

    additions = [ 

                  

                 ] 

    # Create pipelines 

    pipelines = [] 

    for model in models: 
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        # Append only model 

        model_name = "_" + model[0] 

        pipelines.append((model_name, Pipeline([model]))) 

 

        # Append model+scaler 

        for scalar in scalers: 

            model_name = scalar[0] + "_" + model[0] 

            pipelines.append((model_name, Pipeline([scalar, model]))) 

 

        # To easier distinguish between with and without Additions (i.e: PCA) 

        # Append model+addition 

        for addition in additions: 

            model_name = "_" + model[0] + "_" + addition[0] 

            pipelines.append((model_name, Pipeline([addition, model]))) 

 

        # Append model+scaler+addition 

        for scalar in scalers: 

            for addition in additions: 

                model_name = scalar[0] + "_" + model[0] + "_" + addition[0] 

                pipelines.append((model_name, Pipeline([scalar, addition, model]))) 

    return pipelines 

def run_cv(X_train, y_train, X_test, y_test, target_name, pipelines, metrics, seed, num_folds, 

                    dataset_name, search_space,n_jobs): 

    """ 

        Iterate over the pipelines, calculate CV mean and std scores, fit on train and predict on test. 

        Return the results in a dataframe 

    """ 

 

    # List that contains the rows for a dataframe 

    rows_list = [] 

 

    # Lists for the pipeline results 

    names = [] 

    # test_scores = [] 

    prev_clf_name = pipelines[0][0].split("_")[1] 

    count = 0 

    for name, model in pipelines: 

        #validation bit 

         

        kfold = KFold(n_splits=k, random_state=seed,  

                                      shuffle=True) 

        # gs = GridSearchCV(model,this_space,scoring=metrics,refit=metrics[0], 

        #                 cv=kfold,verbose=0) 

        # gs.fit(X_test,y_test) 

        # this_best_estimator = gs.best_estimator_ 

 

        cv_results = cross_validate(model, X_train, y_train,  

                                cv=kfold, n_jobs=n_jobs,  

                                scoring=metrics) 

        names.append(name) 

        # Add separation line if different classifier applied 

        rows_list, prev_clf_name = check_seperation_line(name, prev_clf_name, 

                                                         rows_list) 
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        # Get best 

        this_score = cv_results['test_r2'].mean() 

        if count == 0:  

            #initialize the following variables in the first iteration 

            best_score = this_score 

            count = 1 

            best_model = model 

            best_name = name 

        elif this_score > best_score: 

            #get best to return 

            best_score = this_score 

            best_model = model 

            best_name = name 

        # Add for final dataframe 

        model.fit(X_train,y_train[target_name]) 

        y_pred = model.predict(X_test) 

        results_dict = {"Dataset": dataset_name, 

                        "Classifier_Name": name, 

                        "CV_mean_R2": cv_results['test_r2'].mean(), 

                        "CV_std_R2": cv_results['test_r2'].std(), 

                        "CV_mean_RMSE":  

                            -cv_results['test_neg_root_mean_squared_error'].mean(), 

                        "CV_std_RMSE":  

                            cv_results['test_neg_root_mean_squared_error'].std(), 

                        "Test_R2":  

                           r2_score(y_test,y_pred), 

                        "Test_RMSE":  

                           mean_squared_error(y_test,y_pred, 

                                              squared=False)#return RMSE 

                        } 

        rows_list.append(results_dict) 

 

    all_results = pd.DataFrame(rows_list) 

     

    return best_name,best_model,all_results 

def check_seperation_line(name, prev_clf_name, rows_list): 

    """ 

        Add empty row if different classifier ending 

    """ 

 

    clf_name = name.split("_")[1] 

    if prev_clf_name != clf_name: 

        empty_dict = {"Dataset": "", #used to create empty rows 

                      # "Classifier_Name": "", 

                      # "CV_mean": "", 

                      # "CV_std": "" 

                      # "Test_acc": "" 

                      } 

        rows_list.append(empty_dict) 

        prev_clf_name = clf_name 

    return rows_list, prev_clf_name 

def plot_true_vs_predicted(model,model_name,X_test,y_test,title):# 

    """ 
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    some useful plotting functions 

    """ 

    # y_test.reset_index(drop=True,inplace=True) 

    nsample = len(y_test) 

    fig, ax = pyplot.subplots(figsize=(8,6)) 

    x = list(range(0, nsample)) 

    sorted_idx = y_test.argsort() 

    ax.plot(x, np.array(y_test)[sorted_idx], 'o', label="data")     

    y_pred = model.predict(X_test) 

    print(mean_squared_error(y_test,y_pred,squared=False)) 

    ax.plot(x, (y_pred)[sorted_idx], 'r--.', label=model_name) 

    fig.suptitle(title, fontsize = 12) 

    ax.legend(loc='best'); 

def get_search_space(seed): 

    """ 

        Create a dictionary with classifier name as a key and it's hyper parameters options as a value 

    :return: 

    """ 

    # OLS PARAMS 

    ols_params = { 

                    "OLS__fit_intercept": [True,False] 

                    }     

     

    # KNN PARAMS 

    n_neighbors = [int(x) for x in np.linspace(start=1, stop=20, num=4)] 

    weights = ["uniform", "distance"] 

    algorithm = ["auto", "ball_tree", "kd_tree", "brute"] 

    leaf_size = [int(x) for x in np.linspace(start=5, stop=50, num=5)] 

    p = [int(x) for x in np.linspace(start=1, stop=4, num=4)] 

    knn_params = {'KNN__n_neighbors': n_neighbors, 

                  'KNN__weights': weights, 

                  'KNN__algorithm': algorithm, 

                  'KNN__leaf_size': leaf_size, 

                  'KNN__p': p, 

                  } 

 

    # SVR PARAMS 

    kernel = ["linear", "poly", "rbf", "sigmoid"] 

    degree = [int(x) for x in np.linspace(start=1, stop=5, num=5)] 

    C = [x for x in np.arange(0.1, 2, 0.4)] 

    svr_params = {'SVR__C': C, 

                  'SVR__degree': degree, 

                  'SVR__kernel': kernel, 

                  } 

 

 

    # DecisionTreeRegressor PARAMS 

    criterion = ['mse', 'mae','poisson'] #'freidman_mse', 

    splitter = ['best', 'random'] 

    max_depth = [int(x) for x in np.linspace(10, 110, num=5)] 

    max_depth.append(None) 

    min_samples_split = [2, 5, 10] 

    min_samples_leaf = [1, 2, 4] 
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    max_features = ["auto", "sqrt", "log2"] 

    max_features.append(None) 

    random_state = [seed] 

    dtr_params = {  

                    'DTR__criterion': criterion, 

                    'DTR__splitter': splitter, 

                    'DTR__max_depth': max_depth, 

                    'DTR__min_samples_split': min_samples_split, 

                    'DTR__min_samples_leaf': min_samples_leaf, 

                    'DTR__max_features': max_features, 

                    'DTR__random_state':random_state 

                    } 

 

    

     

    hypertuned_params = {  

                           "OLS": ols_params, 

                           "KNN": knn_params, 

                           "SVR": svr_params, 

                           "DTR": dtr_params, 

                          } 

 

    return hypertuned_params 

 

#%% Attributes 

 

seed = 1234 

metrics = ['r2','neg_root_mean_squared_error'] 

k = 10 

#%% Choose your Character 

condition1 = 0 

if(condition1 == 0): 

    target_name = 'Libre (mg/dL)' 

    loadpath = ['./data/Pilot/Subject1_DP/Outputs/smallerdataset-DP.csv', 

                    './data/Pilot/Subject2_BM/Outputs/smallerdataset-BM.csv', 

                    './data/Pilot/Subject3_BB/Outputs/smalldataset-BB.csv'] 

     

elif(condition1 == 1):  

    target_name = 'test_glucose' 

    loadpath = ['./data/Ohio/Raw/raw_559.csv'] 

     

dataframes,file_names = load_my_data(loadpath) 

file_name = file_names[0] 

df = dataframes[0] #just look at one at a time for now 

X,y = get_x_cols(df,target_name) 

#%% Choose how to split the data 

condition2 = 0 

if(condition2 == 0): 

    X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.20, 

                                                            random_state=seed) 

    

if(condition2 == 1): 

    pass 
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#%% Main 

 

 

pipe = create_pipelines(seed) 

search_space = get_search_space(seed) 

best_name,best_model,all_results = run_cv(X_train, y_train, X_test, y_test,  

                                          target_name, pipe, metrics, seed, 

                                          num_folds=k,dataset_name=file_name,  

                                          search_space=search_space, 

                                          n_jobs=-1) 

if('Scaler' in best_name.split('_')[0]): 

    scaler = best_model.steps[0][1] 

    scaler.fit(X_train) 

    X_test = scaler.transform(X_test) 

best_model.fit(X_train,y_train[target_name]) 

plot_true_vs_predicted(best_model,best_name,X_test,y_test[target_name], 

                       title='True vs Predicted') 

print(best_model.score(X_train,y_train[target_name])) 

print(best_model.score(X_test,y_test[target_name])) 

print(best_model.score(X,y)) 
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